Engine Driven Power Generation Presented To: Distributed Energy Resources Road Show

Raymond A. Protich
Managing Director
Reliable Power
May 1, 2003

Distributed Generation: Chicago Style

Distributed Generation: Chicago Style

- Over 100 Distributed Generation (DG) systems are installed in the Chicagoland area.
- Installed systems range in size from 60 kw to over 25 mw
- Average DG installation is 1600 kw to 2000 kw
- 90% of the installations utilize engine driven power technology
- Natural Gas is the predominant fuel of choice
- Most DG systems operate during ComEd's peak energy or demand periods (9am to 6pm or 10pm M-F)
- Most DG systems also provide standby power to their facilities
- Almost all of the installations are owned by the facility
- 50% of the installations have limited or no heat recovery which makes them a power generation system

What is Cogeneration?

- Cogeneration is defined as the simultaneous production of 2 forms of useful energy from a single fuel source. It is also now referred to as Combined Heat and Power
- An example would be a reciprocating generator set producing electricity and hot water using natural gas as a fuel
- Distributed Generation has also been known as:
 - Distributive Energy Resources (Today)
 - Cogeneration (always)
 - Onsite Generation (80's)
 - Total Energy (60's and 70's)

Distributed Generation System Advantages

- Reduces Energy Costs
 - Most facilities can reduce their energy costs by over 25%
- Utilizes Energy More Efficiently
 - A cogeneration system can have an overall efficiency of 70% to 80% compared to a utility generating plant of 30%
- Provides Standby Power
 - Can be used as a standby generator for designated loads
 - Can replace code required standby generator where allowed
- Improves Power Quality and Reliability
 - Provides localized voltage support
 - Provides a semi-interruptible power source

Distributed Generation System Economics

- Most DG systems operate during ComEd's peak demand or energy periods
 - The average cost of power is 10 to 14 cents per kWh during the peak periods and 2.5 cents per kWh during off peak periods
- Most DG systems can produce power for approximately 5-6 cents per kWh
 - Natural Gas cost 4 cents per kWh
 - DG system maintenance cost 1 cent per kWh
 - ComEd Rate 18 standby cost 1 cent per KWh
- A typical 1000 kW DG system can save \$135,000 to \$200,000 annually depending upon fuel cost and heat recovery

Distributed Generation System Economics

- A 1000 kW DG system is typically installed for \$900 to \$1200 per kW
- Factors that impact DG installation costs
 - Packaged vs. site constructed
 - Location on site in respect to electrical services and thermal usage points
 - Site modifications required such as a structure for the cogeneration system (approx 1 square ft/ kW)
 - Utility electrical interconnection costs
- Most DG systems have a payback of 4 to 7 years but...
 - Payback can be reduced to 2 to 5 years if a standby generator set was going to be installed

Who Are The Candidates For Distributed Generation

- Hospitals
- Industrial Facilities
- Schools
- Institutions
- Office Buildings
- Just about anybody who needs a standby generator or has a concern about power reliability!

Engine Generator Characteristics

- Types of Engine Generators
 - Naturally Aspirated
 - Turbo-Charged
- Types of Engine Generator Fuel
 - Diesel (100%)
 - Spark ignited (Natural gas, bio gas)
 - Dual Fuel (Diesel pilot)
- Engine Generator Speed
 - Standby Diesel 1800 rpm
 - Standby Natural Gas 1800 rpm, 1200 rpm
 - Cogeneration 1800 rpm, 1200rpm, 900 rpm

Engine Generator Characteristics

- Engine Generator Combustion
 - Standard (Typically requires catalytic converter)
 - Lean Burn
- Engine Generator Efficiencies (Btu's In)
 - Electrical 30 to 36% HHV
 - Jacket water 30% (180F to 200F typical)
 - Exhaust Heat 15% (180F to 350F typical)
- Engine Generator Ratings
 - Typical Voltages include 120/208, 277/480, 4160 vac
 - Above 4160 vac a step-up transformer is typically used
 - Power factor .8
 - Fault contribution relatively small compared to utility

Engine Generator Maintenance

- Maintenance on natural gas generator sets can range from .6 to 2.0 cents per kWh depending on:
 - Size and speed of genset
 - Electrical load factor
 - Balance of plant
- Using actual annual maintenance costs from equipment suppliers is the best approach
- Key engine generator maintenance items include:
 - Oil and filters: 1000 hours
 - Turbocharger rebuild: 10,000 hours
 - Top end overhaul: 12,000 to 20,000 hours
 - Major overhaul: 25,000 to 40,000

Distributed Generation System Description

- Engine Generator Set
- Radiator
- Jacket Water Heat Exchanger
- Exhaust Heat Exchanger
- Generator Controls
- Paralleling Switchgear and Protective Relays
- Enclosure or Building

Natural Gas Distributed Generation Generator Set (1100 kW)

Distributed Generation Paralleling Controls and Switchgear (2000 amp)

Packaged 265 kW Standby Genset

Types of Engine Applications

- Standby Generator sets
 - Diesel or Natural Gas
 - Operating hours under 500 hours annually
 - Provides standby power to dedicated loads
 - Can be used as peak shaving for utility demand limiting
 - Can be used for interruptible electric utility rates
- Distributed Generation
 - Natural Gas or Bio gas
 - Provides reduced energy operating costs to facility
 - Operating hours in Chicagoland 2300, 3300 and 8760
 - Generally provides standby power to facility
 - Provides improved power reliability and voltage support
 - Generally operates "Base Loaded" during the electric utilities peak periods

Cogeneration Related Standards

- National Fire Protection Association (NFPA)
 - National Electrical Code
 - NFPA 37: Installation and Use of Stationary Combustion Engines and Gas Turbines
 - NFPA 110: Emergency and Standby Power Systems
- Institute of Electrical and Electronic Engineers (IEEE)
 - Various Standards and Papers
- ComEd
 - Guidelines for Interconnection of Generation to the ComEd System (Blue Book)

Electric Utility Interconnection

- Types of Electric Utility Interconnection
 - Open transition transfer switch
 - Closed transition transfer switch (make before break)
 - Paralleled circuit breaker
 - Isolated operation (No utility interconnection)
- Utility Interconnection Issues (Safety)
 - Back feed of utility electrical system during an outage
 - Synchronism of genset to the utility
 - Synchronism of utility to genset during a reclosure operation

ComEd Electrical Interconnection Requirements

- ComEd Interconnection Plans
 - Plan "A" 25 to 2500 kVA
 - Plan "B" 2500 to 10,000 kVA
 - Plan "C" 10,000 kVA and above
- Must also meet 50% minimum line loading requirement
 - Most 1000 kW and above DG systems require ComEd Plan
 "B" interconnection due to minimum line loading
- Typical DG system ComEd interconnection review, approval and modification implementation is 6 months

ComEd Electrical Interconnection Requirements

- ComEd Interconnection Costs
 - Plan "A" \$2500: Generally requires no line modifications
 - Plan "B" \$80,000: Generally requires line re-closer upgrades
 - Plan "C" \$150,000+: Generally requires line re-closer upgrades and remote communications (Transfer trip)
- Other System Interconnection Requirements
 - Momentary parallel operation for less then 1 minute generally permitted without special interconnection requirements
 - Parallel operation on the ComEd low voltage network system is not allowed
 - Special modifications are required when paralleling thru an ATO

Brookfield Zoo Distributed Generation System

- Brookfield Zoo System Description
 - (2) 1100 kW natural gas lean burn gensets (No heat recovery)
 - (1) 1600 kW diesel genset
 - Specialized 4160 volt generator controls and paralleling switchgear
 - Dual ComEd 12.47 kV feeders and transformers
- System Operation
 - ComEd peak energy hours during the summer
 - ComEd peak demand hours all other times
- Unique Features and Benefits
 - Saves Brookfield Zoo over \$ 500,000 annually
 - Provides site voltage support during summer periods
 - Operates isolated from utility grid during major storms
 - Provides minimum operational support upon failure of both utility feeders and 2 of 3 gensets

Brookfield Zoo Distributed Generation System (Engine Room)

Brookfield Zoo Distributed Generation System (Switchgear Room)

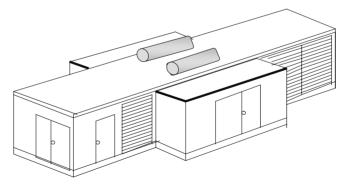
Let's Review

- Distributed Generation is a cost effective way of:
 - Reducing Energy Costs
 - Providing Standby Power
 - Improving Power Reliability
 - Using Energy Resources More Efficiently
- Distributed Generation Is A Proven Technology
 - Over 100 systems in the Chicagoland area
- Distributed Generation Is Cost Effective
- So What's The Problem?

Barriers to Distributed Energy Resources

- Perception and Attitudes
 - End User
 - A/E Firms
 - Equipment Suppliers
- Electric Utility (Things Have Improved But…)
 - Interconnection costs account for 8 to 12% of a 1000 kW project
 - Very little incentive to promote cogeneration
 - New generation automated distribution systems may not be compatible with distributed generation systems without costly modifications
- Distributed Generation Economics
 - Installation costs
 - Natural gas and electricity costs

Reliable Power Dual Chicago Style Packaged Generation Unit


- Goal: Provide facilities with an opportunity to install a cost effective distributed generation system that:
 - Provides redundant standby generation sources that can be used for cogeneration in the City of Chicago
 - Meets 10 second standby genset start requirements
 - Increases power reliability
 - Reduces energy costs
- Design a product specifically to comply with the City of Chicago requirements for Emergency Generators to operate as Cogeneration Use (Article 701,18-27-701.15)

Reliable Power Dual *Chicago Style*Packaged Generation Unit Features

- Completely packaged dual (2) natural gas generator sets:
 - Provides 400 kW required for standby generation
 - Provides 800 kW for distributed generation for energy savings
 - Complete generator controls and paralleling switchgear for ComEd interconnection. (Protective relaying and Rate 18 metering)
 - Jacket water heat recovery is optional
 - Diesel generator sets are optional
- Compartmentalized into 4 sections optimized for use and environment
 - Gensets
 - Generator controls and paralleling switchgear
 - Air inlet and Baffles
 - Radiator

Chicago Style Packaged Unit

Reliable Power Chicago Twin Packaged Power

Reliable Power Dual *Chicago Style*Packaged Generation Unit Features

- The packaged unit is
 - Designed specifically to comply with City of Chicago codes
 - Factory assembled and tested
 - Requires minimal site assembly
 - Sound attenuated to approx 72db @23'
 - Allows ample working clearance around genset
 - Utilizes standard design for lowest cost and highest quality
- Generator controls and switchgear:
 - Designed specifically to comply with City of Chicago Codes
 - Designed specifically to comply with ComEd interconnection relaying and metering requirements
 - Provides separate cogeneration and standby load connections
 - Utilizes "State of the Art" PLC control and remote monitor systems
 - UL listed

Reliable Power Dual Chicago Style Packaged Generation Unit Benefits

- Complete Package
- Provides "One Source" responsibility
- Provides reduced installation costs
- Provides improved quality
- Provides a "Win- Win" situation to meet City of Chicago requirements and reduce energy costs

Questions/ Comments